14 research outputs found

    NGTS clusters survey - I. Rotation in the young benchmark open cluster Blanco 1

    Get PDF
    We determine rotation periods for 127 stars in the ~115 Myr old Blanco 1 open cluster using ~200 days of photometric monitoring with the Next Generation Transit Survey (NGTS). These stars span F5-M3 spectral types (1.2 M\gtrsim M \gtrsim 0.3 M_{\odot}) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalised autocorrelation (G-ACF) and Lomb-Scargle (LS) periodograms, and find that GPs and G-ACF are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ~2 to 10 days, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ~100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly-aged Pleiades: the single star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ~100 Myr

    Stellar flares detected with the Next Generation Transit Survey

    Full text link
    We present the results of a search for stellar flares in the first data release from the Next Generation Transit Survey (NGTS). We have found 610 flares from 339 stars, with spectral types between F8 and M6, the majority of which belong to the Galactic thin disc. We have used the 13-s cadence NGTS light curves to measure flare properties such as the flare amplitude, duration, and bolometric energy. We have measured the average flare occurrence rates of K and early to mid-M stars and present a generalized method to measure these rates while accounting for changing detection sensitivities. We find that field age K and early M stars show similar flare behaviour, while fully convective M stars exhibit increased white-light flaring activity, which we attribute to their increased spin-down time. We have also studied the average flare rates of pre-main-sequence K and M stars, showing they exhibit increased flare activity relative to their main-sequence counterparts

    Simultaneous TESS and NGTS Transit Observations of WASP-166b

    Get PDF
    We observed a transit of WASP-166 b using nine NGTS telescopes simultaneously with TESS observations of the same transit. We achieved a photometric precision of 152 ppm per 30 minutes with the nine NGTS telescopes combined, matching the precision reached by TESS for the transit event around this bright (T=8.87) star. The individual NGTS light curve noise is found to be dominated by scintillation noise and appears free from any time-correlated noise or any correlation between telescope systems. We fit the NGTS data for TCT_C and Rp/RR_p/R_*. We find TCT_C to be consistent to within 0.25σ\sigma of the result from the TESS data, and the difference between the TESS and NGTS measured Rp/RR_p/R_* values is 0.9σ\sigma. This experiment shows that multi-telescope NGTS photometry can match the precision of TESS for bright stars, and will be a valuable tool in refining the radii and ephemerides for bright TESS candidates and planets. The transit timing achieved will also enable NGTS to measure significant transit timing variations in multi-planet systems

    NGTS clusters survey - III. A low-mass eclipsing binary in the Blanco 1 open cluster spanning the fully convective boundary

    Get PDF
    We present the discovery and characterization of an eclipsing binary identified by the Next Generation Transit Survey in the ∼115-Myr-old Blanco 1 open cluster. NGTS J0002-29 comprises three M dwarfs: a short-period binary and a companion in a wider orbit. This system is the first well-characterized, low-mass eclipsing binary in Blanco 1. With a low mass ratio, a tertiary companion, and binary components that straddle the fully convective boundary, it is an important benchmark system, and one of only two well-characterized, low-mass eclipsing binaries at this age. We simultaneously model light curves from NGTS, TESS, SPECULOOS, and SAAO, radial velocities from VLT/UVES and Keck/HIRES, and the system’s spectral energy distribution. We find that the binary components travel on circular orbits around their common centre of mass in Porb = 1.098 005 24 ± 0.000 000 38 d, and have masses Mpri = 0.3978 ± 0.0033 M☉ and Msec = 0.2245 ± 0.0018 M☉, radii Rpri = 0.4037 ± 0.0048 R☉ and Rsec = 0.2759 ± 0.0055 R☉, and effective temperatures Tpri = 3372+44-37 K and Tsec = 3231+38-31 K. We compare these properties to the predictions of seven stellar evolution models, which typically imply an inflated primary. The system joins a list of 19 well-characterized, low-mass, sub-Gyr, stellar-mass eclipsing binaries, which constitute some of the strongest observational tests of stellar evolution theory at low masses and young ages

    NGTS and WASP photometric recovery of a single-transit candidate from TESS

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) produces a large number of single-transit event candidates, since the mission monitors most stars for only ∼27d. Such candidates correspond to long-period planets or eclipsing binaries. Using the TESS Sector 1 full-frame images, we identified a 7750 ppm single-transit event with a duration of 7 h around the moderately evolved F-dwarf star TIC-238855958 (Tmag = 10.23, Teff = 6280 ± 85 K). Using archival WASP photometry we constrained the true orbital period to one of three possible values. We detected a subsequent transit-event with NGTS, which revealed the orbital period to be 38.20 d. Radial velocity measurements from the CORALIE Spectrograph show the secondary object has a mass of M2 = 0.148 ± 0.003M⊙, indicating this system is an F-M eclipsing binary. The radius of the M-dwarf companion is R2 = 0.171 ± 0.003 R⊙, making this one of the most well characterized stars in this mass regime. We find that its radius is 2.3σ lower than expected from stellar evolution models

    TIC-320687387 B: a long-period eclipsing M-dwarf close to the hydrogen burning limit

    Full text link
    We are using precise radial velocities from CORALIE together with precision photometry from the Next Generation Transit Survey (NGTS) to follow-up stars with single-transit events detected with the Transiting Exoplanet Survey Satellite (TESS). As part of this survey, we identified a single transit on the star TIC-320687387, a bright (T = 11.6) G-dwarf observed by TESS in Sectors 13 and 27. From subsequent monitoring of TIC-320687387 with CORALIE, NGTS, and Lesedi we determined that the companion, TIC-320687387 B, is a very low-mass star with a mass of 96.2±1.92.0 MJ and radius of 1.14±0.020.02 RJ placing it close to the hydrogen burning limit (∼80 MJ). TIC-320687387 B is tidally decoupled and has an eccentric orbit, with a period of 29.77381 d and an eccentricity of 0.366 ± 0.003. Eclipsing systems such as TIC-320687387 AB allow us to test stellar evolution models for low-mass stars, which in turn are needed to calculate accurate masses and radii for exoplanets orbiting single low-mass stars. The sizeable orbital period of TIC-320687387 B makes it particularly valuable as its evolution can be assumed to be free from perturbations caused by tidal interactions with its G-type host star.</p

    NGTS-21b: an inflated Super-Jupiter orbiting a metal-poor K dwarf

    Full text link
    We report the discovery of NGTS-21b , a massive hot Jupiter orbiting a low-mass star as part of the Next Generation Transit Survey (NGTS). The planet has a mass and radius of 2.36 ± 0.21 MJ and 1.33 ± 0.03 RJ, and an orbital period of 1.543 d. The host is a K3V (Teff = 4660 ± 41 K) metal-poor ([Fe/H] = −0.26 ± 0.07 dex) dwarf star with a mass and radius of 0.72 ± 0.04 M⊙ and 0.86 ± 0.04R⊙. Its age and rotation period of 10.02+3.29−7.30 Gyr and 17.88 ± 0.08 d, respectively, are in accordance with the observed moderately low-stellar activity level. When comparing NGTS-21b with currently known transiting hot Jupiters with similar equilibrium temperatures, it is found to have one of the largest measured radii despite its large mass. Inflation-free planetary structure models suggest the planet’s atmosphere is inflated by ∼21 per cent⁠, while inflationary models predict a radius consistent with observations, thus pointing to stellar irradiation as the probable origin of NGTS-21b’s radius inflation. Additionally, NGTS-21b’s bulk density (1.25 ± 0.15 g cm–3) is also amongst the largest within the population of metal-poor giant hosts ([Fe/H] < 0.0), helping to reveal a falling upper boundary in metallicity–planet density parameter space that is in concordance with core accretion formation models. The discovery of rare planetary systems such as NGTS-21 greatly contributes towards better constraints being placed on the formation and evolution mechanisms of massive planets orbiting low-mass stars.</p

    NGTS-19b: a high-mass transiting brown dwarf in a 17-d eccentric orbit

    Full text link
    We present the discovery of NGTS-19b, a high mass transiting brown dwarf discovered by the Next Generation Transit Survey (NGTS). We investigate the system using follow up photometry from the South African Astronomical Observatory, as well as sector 11 TESS data, in combination with radial velocity measurements from the CORALIE spectrograph to precisely characterise the system. We find that NGTS-19b is a brown dwarf companion to a K-star, with a mass of 69.55.4+5.769.5 ^{+5.7}_{-5.4} MJup_{Jup} and radius of 1.0340.053+0.0551.034 ^{+0.055}_{-0.053} RJup_{Jup}. The system has a reasonably long period of 17.84 days, and a high degree of eccentricity of 0.37670.0061+0.00610.3767 ^{+0.0061}_{-0.0061}. The mass and radius of the brown dwarf imply an age of 0.460.15+0.260.46 ^{+0.26}_{-0.15} Gyr, however this is inconsistent with the age determined from the host star SED, suggesting that the brown dwarf may be inflated. This is unusual given that its large mass and relatively low levels of irradiation would make it much harder to inflate. NGTS-19b adds to the small, but growing number of brown dwarfs transiting main sequence stars, and is a valuable addition as we begin to populate the so called brown dwarf desert

    NGTS-11 b / TIC-54002556 b: A transiting warm Saturn recovered from a TESS single-transit event

    Full text link
    We report the discovery of NGTS-11 b (=TIC-54002556 b), a transiting Saturn in a 35.46-day orbit around a mid K-type star (Teff=5050+-80 K). The system was initially identified from a single-transit event in our TESS full-frame image light-curves. Following seventy-nine nights of photometric monitoring with an NGTS telescope, we observed a second full transit of NGTS-11 b approximately one year after the TESS single-transit event. The NGTS transit confirmed the parameters of the transit signal and restricted the orbital period to a set of 13 discrete periods. We combined our transit detections with precise radial velocity measurements to determine the true orbital period and measure the mass of the planet. We find NGTS-11 b has a radius of 0.823+-0.035 RJup, a mass of 0.37+-0.14 MJup, and an equilibrium temperature of just 440+-40 K, making it one of the coolest known transiting gas giants. NGTS-11 b is the first exoplanet to be discovered after being initially identified as a TESS single transit event, and its discovery highlights the power of intense photometric monitoring in recovering longer-period transiting exoplanets from single-transit events

    NGTS 15b, 16b, 17b and 18b: four hot Jupiters from the Next Generation Transit Survey

    Full text link
    We report the discovery of four new hot Jupiters with the Next Generation Transit Survey (NGTS). NGTS-15b, NGTS-16b, NGTS-17b, and NGTS-18b are short-period (P<5P<5d) planets orbiting G-type main sequence stars, with radii and masses between 1.101.301.10-1.30 RJR_J and 0.410.760.41-0.76 MJM_J. By considering the host star luminosities and the planets' small orbital separations (0.0390.0520.039-0.052 AU), we find that all four hot Jupiters are highly irradiated and therefore occupy a region of parameter space in which planetary inflation mechanisms become effective. Comparison with statistical studies and a consideration of the planets' high incident fluxes reveals that NGTS-16b, NGTS-17b, and NGTS-18b are indeed likely inflated, although some disparities arise upon analysis with current Bayesian inflationary models. However, the underlying relationships which govern radius inflation remain poorly understood. We postulate that the inclusion of additional hyperparameters to describe latent factors such as heavy element fraction, as well as the addition of an updated catalogue of hot Jupiters, would refine inflationary models, thus furthering our understanding of the physical processes which give rise to inflated planets
    corecore